Запис Детальніше

Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
 
Creator Calvaruso, G.
García-Río, E.
 
Description Together with spaces of constant sectional curvature and products of a real line
with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 0.5n(n − 1) + 1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25–33]. We shall prove that the curvature tensor of these spaces satisfi several interesting algebraic properties. In particular, we will show that Egorov spaces are Ivanov–Petrova manifolds, curvature-Ricci commuting (indeed, semi-symmetric) and P-spaces, and that ε-spaces are Ivanov–Petrova and curvature-curvature commuting manifolds.
 
Date 2019-02-07T12:50:53Z
2019-02-07T12:50:53Z
2010
 
Type Article
 
Identifier Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups / E. García-Río // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C50; 53C20
http://dspace.nbuv.gov.ua/handle/123456789/146096
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України