Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
|
|
Creator |
Calvaruso, G.
García-Río, E. |
|
Description |
Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 0.5n(n − 1) + 1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25–33]. We shall prove that the curvature tensor of these spaces satisfi several interesting algebraic properties. In particular, we will show that Egorov spaces are Ivanov–Petrova manifolds, curvature-Ricci commuting (indeed, semi-symmetric) and P-spaces, and that ε-spaces are Ivanov–Petrova and curvature-curvature commuting manifolds. |
|
Date |
2019-02-07T12:50:53Z
2019-02-07T12:50:53Z 2010 |
|
Type |
Article
|
|
Identifier |
Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups / E. García-Río // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 53C50; 53C20 http://dspace.nbuv.gov.ua/handle/123456789/146096 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|