Quantum Isometry Group for Spectral Triples with Real Structure
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Quantum Isometry Group for Spectral Triples with Real Structure
|
|
Creator |
Goswami, D.
|
|
Description |
Given a spectral triple of compact type with a real structure in the sense of [Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of 'volume form' as in [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572].
|
|
Date |
2019-02-07T14:43:33Z
2019-02-07T14:43:33Z 2010 |
|
Type |
Article
|
|
Identifier |
Quantum Isometry Group for Spectral Triples with Real Structure / D. Goswami // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — англ.
1815-0659 2010 Mathematics Subject Classification: 58B32 http://dspace.nbuv.gov.ua/handle/123456789/146117 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|