Запис Детальніше

Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
 
Creator Kuniba, A.
Takagi, T.
 
Description We study an integrable vertex model with a periodic boundary condition associated with Uq(An⁽¹⁾ at the crystallizing point q=0. It is an (n+1)-state cellular automaton describing the factorized scattering of solitons. The dynamics originates in the commuting family of fusion transfer matrices and generalizes the ultradiscrete Toda/KP flow corresponding to the periodic box-ball system. Combining Bethe ansatz and crystal theory in quantum group, we develop an inverse scattering/spectral formalism and solve the initial value problem based on several conjectures. The action-angle variables are constructed representing the amplitudes and phases of solitons. By the direct and inverse scattering maps, separation of variables into solitons is achieved and nonlinear dynamics is transformed into a straight motion on a tropical analogue of the Jacobi variety. We decompose the level set into connected components under the commuting family of time evolutions and identify each of them with the set of integer points on a torus. The weight multiplicity formula derived from the q=0 Bethe equation acquires an elegant interpretation as the volume of the phase space expressed by the size and multiplicity of these tori. The dynamical period is determined as an explicit arithmetical function of the n-tuple of Young diagrams specifying the level set. The inverse map, i.e., tropical Jacobi inversion is expressed in terms of a tropical Riemann theta function associated with the Bethe ansatz data. As an application, time average of some local variable is calculated.
 
Date 2019-02-07T19:10:13Z
2019-02-07T19:10:13Z
2010
 
Type Article
 
Identifier Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾ / A. Kuniba, T. Takagi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 82B23; 37K15; 68R15; 37B1
http://dspace.nbuv.gov.ua/handle/123456789/146151
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України