Solitary Waves in Massive Nonlinear SN-Sigma Models
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Solitary Waves in Massive Nonlinear SN-Sigma Models
|
|
Creator |
Izquierdo, A.A.
González León, M.A. de la Torre Mayado, M. |
|
Description |
The solitary waves of massive (1+1)-dimensional nonlinear SN-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive N-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem.
|
|
Date |
2019-02-07T19:20:35Z
2019-02-07T19:20:35Z 2010 |
|
Type |
Article
|
|
Identifier |
Solitary Waves in Massive Nonlinear SN-Sigma Models / A.A. Izquierdo, M.A. González León, M. de la Torre Mayado // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 19 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 35Q51; 81T99 http://dspace.nbuv.gov.ua/handle/123456789/146155 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|