Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
|
|
Creator |
Wehefritz-Kaufmann, B.
|
|
Description |
We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.
|
|
Date |
2019-02-08T20:39:38Z
2019-02-08T20:39:38Z 2010 |
|
Type |
Article
|
|
Identifier |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 82C27; 82B20 DOI:10.3842/SIGMA.2010.039 http://dspace.nbuv.gov.ua/handle/123456789/146319 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|