The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces
|
|
Creator |
Hentosh, O.Ye.
|
|
Description |
The Hamiltonian representation for the hierarchy of Lax-type flows on a dual space to the Lie algebra of shift operators coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is found by means of a specially constructed Bäcklund transformation. The Hamiltonian description for the corresponding set of squared eigenfunction symmetry hierarchies is represented. The relation of these hierarchies with Lax integrable (2+1)-dimensional differential-difference systems and their triple Lax-type linearizations is analysed. The existence problem of a Hamiltonian representation for the coupled Lax-type hierarchy on a dual space to the central extension of the shift operator Lie algebra is solved also.
|
|
Date |
2019-02-09T09:23:32Z
2019-02-09T09:23:32Z 2010 |
|
Type |
Article
|
|
Identifier |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces / O.Ye. Hentosh // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 37J05; 37K10; 37K30; 37K35; 37K60 DOI:10.3842/SIGMA.2010.034 http://dspace.nbuv.gov.ua/handle/123456789/146352 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|