Запис Детальніше

A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
 
Creator Bezubik, A.
Strasburger, A.
 
Description This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained.
 
Date 2019-02-09T16:59:25Z
2019-02-09T16:59:25Z
2006
 
Type Article
 
Identifier A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 33C55; 42B10; 33C80; 44A15; 44A20
http://dspace.nbuv.gov.ua/handle/123456789/146431
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України