Запис Детальніше

Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
 
Creator Ito, T.
Terwilliger, P.
 
Description We consider the double affine Hecke algebra H=H(k₀,k₁,k₀v,k₁v;q) associated with the root system (C₁v,C₁). We display three elements x, y, z in H that satisfy essentially the Z₃-symmetric Askey-Wilson relations. We obtain the relations as follows. We work with an algebra Ĥ that is more general than H, called the universal double affine Hecke algebra of type (C₁v,C₁). An advantage of Ĥ over H is that it is parameter free and has a larger automorphism group. We give a surjective algebra homomorphism Ĥ → H. We define some elements x, y, z in Ĥ that get mapped to their counterparts in H by this homomorphism. We give an action of Artin's braid group B₃ on Ĥ that acts nicely on the elements x, y, z; one generator sends x → y → z → x and another generator interchanges x, y. Using the B₃ action we show that the elements x, y, z in Ĥ satisfy three equations that resemble the Z₃-symmetric Askey-Wilson relations. Applying the homomorphism Ĥ → H we find that the elements x, y, z in H satisfy similar relations.
 
Date 2019-02-09T20:27:33Z
2019-02-09T20:27:33Z
2010
 
Type Article
 
Identifier Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations / T. Ito, P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D80; 33D45
DOI:10.3842/SIGMA.2010.065
http://dspace.nbuv.gov.ua/handle/123456789/146531
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України