Запис Детальніше

Hopf Maps, Lowest Landau Level, and Fuzzy Spheres

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
 
Creator Hasebe, K.
 
Description This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an interesting hierarchical structure made of ''compounds'' of lower dimensional spheres. We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions. With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.
 
Date 2019-02-09T20:29:48Z
2019-02-09T20:29:48Z
2010
 
Type Article
 
Identifier Hopf Maps, Lowest Landau Level, and Fuzzy Spheres / K. Hasebe // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 102 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B70; 58B34; 81V70
DOI:10.3842/SIGMA.2010.071
http://dspace.nbuv.gov.ua/handle/123456789/146533
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України