Erlangen Program at Large-1: Geometry of Invariants
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Erlangen Program at Large-1: Geometry of Invariants
|
|
Creator |
Kisil, V.V.
|
|
Description |
This paper presents geometrical foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theories based on the representation theory of SL₂(R) group. We describe here geometries of corresponding domains. The principal rôle is played by Clifford algebras of matching types. In this paper we also generalise the Fillmore-Springer-Cnops construction which describes cycles as points in the extended space. This allows to consider many algebraic and geometric invariants of cycles within the Erlangen program approach.
|
|
Date |
2019-02-09T19:41:56Z
2019-02-09T19:41:56Z 2010 |
|
Type |
Article
|
|
Identifier |
Erlangen Program at Large-1: Geometry of Invariants / V.V. Kisil // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 73 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 30G35; 22E46; 30F45; 32F45 DOI:10.3842/SIGMA.2010.076 http://dspace.nbuv.gov.ua/handle/123456789/146514 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|