Запис Детальніше

Erlangen Program at Large-1: Geometry of Invariants

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Erlangen Program at Large-1: Geometry of Invariants
 
Creator Kisil, V.V.
 
Description This paper presents geometrical foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theories based on the representation theory of SL₂(R) group. We describe here geometries of corresponding domains. The principal rôle is played by Clifford algebras of matching types. In this paper we also generalise the Fillmore-Springer-Cnops construction which describes cycles as points in the extended space. This allows to consider many algebraic and geometric invariants of cycles within the Erlangen program approach.
 
Date 2019-02-09T19:41:56Z
2019-02-09T19:41:56Z
2010
 
Type Article
 
Identifier Erlangen Program at Large-1: Geometry of Invariants / V.V. Kisil // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 73 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 30G35; 22E46; 30F45; 32F45
DOI:10.3842/SIGMA.2010.076
http://dspace.nbuv.gov.ua/handle/123456789/146514
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України