A Compact Formula for Rotations as Spin Matrix Polynomials
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
A Compact Formula for Rotations as Spin Matrix Polynomials
|
|
Creator |
Curtright, T.L.
Fairlie, D.B. Zachos, C.K. |
|
Description |
Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. The simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.
|
|
Date |
2019-02-10T10:05:29Z
2019-02-10T10:05:29Z 2014 |
|
Type |
Article
|
|
Identifier |
A Compact Formula for Rotations as Spin Matrix Polynomials / T.L. Curtright, D.B.Fairlie, C.K. Zachos // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 17 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 15A16; 15A30 DOI:10.3842/SIGMA.2014.084 http://dspace.nbuv.gov.ua/handle/123456789/146616 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|