Запис Детальніше

Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
 
Creator Agore, A.L.
Militaru, G.
 
Description For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra of codimension 1. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product h⋉(k∗×AutLie(h)). In the non-perfect case the classification of these Lie algebras is a difficult task. Let l(2n+1,k) be the Lie algebra with the bracket [Ei,G]=Ei, [G,Fi]=Fi, for all i=1,…,n. We explicitly describe all Lie algebras containing l(2n+1,k) as a subalgebra of codimension 1 by computing all possible bicrossed products k⋈l(2n+1,k). They are parameterized by a set of matrices Mn(k)⁴×k²ⁿ⁺² which are explicitly determined. Several matched pair deformations of l(2n+1,k) are described in order to compute the factorization index of some extensions of the type k⊂k⋈l(2n+1,k). We provide an example of such extension having an infinite factorization index.
 
Date 2019-02-10T11:26:00Z
2019-02-10T11:26:00Z
2014
 
Type Article
 
Identifier Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras / A.L. Agore, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B05; 17B55; 17B56
DOI:10.3842/SIGMA.2014.065
http://dspace.nbuv.gov.ua/handle/123456789/146642
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України