Запис Детальніше

Deformations of the Canonical Commutation Relations and Metric Structures

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Deformations of the Canonical Commutation Relations and Metric Structures
 
Creator D'Andrea, F.
Lizzi, F.
Martinetti, P.
 
Description Using Connes distance formula in noncommutative geometry, it is possible to retrieve the Euclidean distance from the canonical commutation relations of quantum mechanics. In this note, we study modifications of the distance induced by a deformation of the position-momentum commutation relations. We first consider the deformation coming from a cut-off in momentum space, then the one obtained by replacing the usual derivative on the real line with the h- and q-derivatives, respectively. In these various examples, some points turn out to be at infinite distance. We then show (on both the real line and the circle) how to approximate points by extended distributions that remain at finite distance. On the circle, this provides an explicit example of computation of the Wasserstein distance.
 
Date 2019-02-10T15:16:30Z
2019-02-10T15:16:30Z
2014
 
Type Article
 
Identifier Deformations of the Canonical Commutation Relations and Metric Structures / F. D'Andrea, F. Lizzi, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 33 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58B34; 46L87
DOI:10.3842/SIGMA.2014.062
http://dspace.nbuv.gov.ua/handle/123456789/146655
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України