Запис Детальніше

Dynamic Bayesian Networks for State- and Action-Space Modelling in Reinforcement Learning

Електронного архіву Харківського національного університету радіоелектроніки (Open Access Repository of KHNURE)

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Dynamic Bayesian Networks for State- and Action-Space Modelling in Reinforcement Learning
 
Creator Леховицький, Д. І.
Ховрат, А. В.
 
Subject Markov Decision Process
Dynamic Bayesian networks
Reinforcement Learning
 
Description In recent years Reinforcement Learning has proven its efficiency in solving
problems of sequential decision making, formalized with a concept called
Markov Decision Process. Though, there is a lot of problems: high computational complexity for multivariate state- and action-space problems, needs to
handle missing data and hidden variables, lack of both good model and a sufficient number of episodes for constructing an optimal policy. In this work we
suggest Dynamic Bayesian networks (DBNs) as a solution. These models provide an elegant and compact representation of joint state-action space, efficient
inference algorithms, which include Monte-Carlo methods and Belief Propagation, and can be used in Dyna-Q Algorithm for integrating real-world and simulated experience.
 
Date 2018-06-05T12:16:44Z
2018-06-05T12:16:44Z
2018
 
Type Thesis
 
Identifier Lekhovitsky D., Khovrat A. Dynamic Bayesian Networks for State- and Action-Space Modelling in Reinforcement Learning / D. Lekhovitsky, A. Khovrat // Радіоелектроніка та молодь у XXI столітті : матеріали 22-го Міжнар. молодіжного форуму, 17–19 апр. 2018 г. – Харків : ХНУРЕ, 2018. – С. 118–119.
http://openarchive.nure.ua/handle/document/5806
 
Language en
 
Publisher ХНУРЕ