Запис Детальніше

Analysis of possibilities to use neural network for remote control of electronic devices

Електронного архіву Харківського національного університету радіоелектроніки (Open Access Repository of KHNURE)

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Analysis of possibilities to use neural network for remote control of electronic devices
Аналіз можливостей використання нейронних мереж для дистанційного керування електронними апаратами
Анализ возможностей применения нейронных сетей для реализации дистанционного управления электронными аппаратами
 
Creator Галкін, П. В.
Голіков, М. О.
 
Subject remote control
neural network
hardware interfaces to communicate
wireless communications
 
Description Література:
1. Ящук А. Системи безпровідних технологій передачі даних // Міністерство
освіти та науки України. 2013. URL: http://lutskntu.com.ua/sites/default/files/
4_yashchuk_sistemi_bezprov_tehnologiy_0.pdf
2. Галкін П. В., Голіков М. О. Безконтактній метод контролю об’єктів. 2018 //
22 международный молодежный форум «Радиоэлектроника и молодеж в 21 веке».
Харків, 2018. С. 56–57.
3. Tengfei Z., Qinxiao L., Fumin M. Remote control system of smart appliances
based on wireless sensor network // 25th Chinese Control and Decision Conference
(CCDC). 2013. Р. 3704–3709. doi: http://doi.org/10.1109/ccdc.2013.6561592
4. Improving wireless devices identification using gray relationship classifier
to enhance wireless network security / Yun L. et. al. // IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). 2018. Р. 421–425.
doi: http://doi.org/10.1109/infcomw.2018.8406960
5. Метод виявлення вторгнень в мобільні радіомережі на основі
нейронних мереж / Сальник С. В., Сальник В. В., Симоненко О. А., Сова О. Я. //
Наука і техніка Повітряних Сил Збройних Сил України. 2015. No 4. Р. 82–90.
6. Shubham S., Achyut H. WiFi-aware as a connectivity solution for IoT pairing
IoT with WiFi aware technology: Enabling new proximity-based services // International
Conference on Internet of Things and Applications (IOTA). 2016. Issue 2. Р. 137–142.
doi: http://doi.org/10.1109/iota.2016.7562710
7. Investigation on the performance of 10 Gb/s on uplink space optical
communication system based on MSK scheme / Mi L. et. al. // 4th International
Conference on Optical Communications and Networks (ICOCN). 2015. Р. 1–3.
doi: http://doi.org/10.1109/icocn.2015.7203690
8. Liu Y. Wireless Information and Power Transfer for Multirelay-Assisted
Cooperative Communication // IEEE Communications Letters. 2016. Vol. 20, Issue 4.
P. 784–787. doi: http://doi.org/10.1109/lcomm.2016.2535114
9. Wireless Powered Communication Networks Assisted by Backscatter
Communication / Lyu B. et. al. // IEEE Access. 2017. Vol. 5. P. 7254–7262.
doi: http://doi.org/10.1109/access.2017.2677521
10. Обработка сигналов в радиоэлектронных системах дистанционного
мониторинга атмосферы / Карташов В. М., Олейников В. Н., Тихонов В. А. и др.
Харьков: СМИТ, 2014. 213 с.
11. Юревич Е. Теория автоматического управления. СПб.: БХВ-Петербург,
2016. 4-е изд., перераб. и доп. 560 с.
12. Remotized Control of Power Electronic Devices Exploiting a Plastic Optical
Fiber Photonic Bus / Anantaram V. et. al. // 20th International Conference on Transparent
Optical Networks (ICTON). 2018. Р. 1–4. doi: http://doi.org/10.1109/icton.2018.8473992
13. Switch automation of smart devices between test beds using distributed
control system / Pavan K. Y. V. et. al. // International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT). 2014.
Р. 1330–1333. doi: http://doi.org/10.1109/iccicct.2014.6993168
14. Sabri G., Cihan K. Remote controllable electronic signboard // International
Conference on Computer Science and Engineering (UBMK). 2017. Р. 78–83.
doi: http://doi.org/10.1109/ubmk.2017.8093561
15. The design and realization of a comprehensive SPI interface controller / Jianlong Z.
et. al. // Second International Conference on Mechanic Automation and Control Engineering.
2011. P. 4529–4532. doi: http://doi.org/10.1109/mace.2011.5988014
16. A design of ultra-low power I2C synchronous slave controller with interface voltage
level independency in 180 nm CMOS technology / Ali I. et. al. // International SoC Design
Conference (ISOCC). 2017. P. 262–263. doi: http://doi.org/10.1109/isocc.2017.8368885
17. Chandwani N., Jain A., Vyavahare P. D. Throughput comparison for
Cognitive Radio network under various conditions of primary user and channel noise
signals // Radio and Antenna Days of the Indian Ocean (RADIO). 2015. Р. 1–2.
doi: http://doi.org/10.1109/radio.2015.7323379
18. Pinku R., Anand S., Ravi K. Experimental investigation on probe feed
equilateral triangular dielectric resonator antenna for 5.8 GHz ISM band (IEEE 802.11) //
Progress In Electromagnetics Research Symposium – Spring (PIERS). 2018. Р. 2195–
2199. doi: http://doi.org/10.1109/piers.2017.8262115
19. Suh D., Ko H., Pack S. Efficiency Analysis of WiFi Offloading Techniques. IEEE
Transactions on Vehicular Technology // IEEE Transactions on Vehicular Technology. 2015.
Vol. 65, Issue 5. Р. 3913–3917. doi: http://doi.org/10.1109/tvt.2015.2437325
20. Khan W. M., Zualkernan I. A. SensePods: A ZigBee-Based Tangible Smart Home
Interface // IEEE Transactions on Consumer Electronics. 2018. Vol. 64, Issue 2. Р. 145–152.
doi: http://doi.org/10.1109/tce.2018.2844729
21. Galkin P. V. Analysis of energy consumption nodes wireless sensor networks //
ScienceRise. 2014. Issue 2 (2). P. 55–61. doi: http://doi.org/10.15587/2313-8416.2014.27246
22. Galkin P. V. An algorithm for operating and optimizing information flows in
wireless sensor networks // Eastern-European Journal of Enterprise Technologies. 2014.
Vol. 6, Issue 3 (72). P. 53–63. doi: http://doi.org/10.15587/1729-4061.2014.30419
23. Haykin S. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1998. 842 p.
24. Yonghua Y., Lan W., Erol G. Multi-layer neural networks for quality of service
oriented server-state classification in cloud servers // International Joint Conference on Neural
Networks (IJCNN). 2017. Issue 1. Р. 1623–1627. doi: http://doi.org/10.1109/ijcnn.2017.7966045
25. Yasuaki K., Hitoshi I. A model of Hopfield-type octonion neural networks and
existing conditions of energy functions // International Joint Conference on Neural Networks
(IJCNN). 2016. Issue 2. Р. 4426–4430. doi: http://doi.org/10.1109/ijcnn.2016.7727778
The object of research in the work is the systems of remote control of electronic devices. There are wired and wireless means of implementing a remote communication channel between the slave and control devices. Analysis of existing means of creating a communication channel, found a low value of the ratio of system flexibility and data transfer rate within the created network. One of the reasons for the low ratio is the use of modules as part of a system with a high minimum operating time. Such modules are modules for filtering and decoding the received signal at the receiver side, encoding and modulation at the transmitter side. Replacing these modules with one with a significantly lower time spent will significantly improve the value of the ratio of system flexibility and data transfer rate. The ability to create a module that will have the necessary properties of time spent on work, provides a neural network.

The model of a remote control system obtained during the study has several advantages, in particular, the presence of a neural network, makes it possible to reduce the time spent and to improve the accuracy of the system during the entire system operation time. This is achieved thanks to the ability of the neural network to self-learning without human intervention and its ability to analyze any input signals with different background noise values. These properties allow the replacement of elements that do not allow to increase the rate of exchange for elements of the neural network that will perform the same functions with greater speed, reliability and accuracy.
The data obtained during the work proves the expediency of integrating the elements of the neural network into the remote control systems of electronic devices. Also, possible places for the integration of a neural network into the remote control system of electronic equipment have been proposed, which will improve the stability, accuracy, speed of the system.
 
Date 2019-02-08T07:46:25Z
2019-02-08T07:46:25Z
2018
 
Type Article
 
Identifier Holikov, M., & Galkin, P. (2018). Analysis of possibilities to use neural network for remote control of electronic devices. Technology Audit And Production Reserves, 6(2(44)), 42-49. doi:http://dx.doi.org/10.15587/2312-8372.2018.149539
DOI: https://doi.org/10.15587/2312-8372.2018.149539
http://journals.uran.ua/tarp/article/view/149539
http://openarchive.nure.ua/handle/document/7851
 
Language en
 
Relation Vol 6;No 2(44) (2018)
Том 6;№ 2(44) (2018)
 
Publisher Technology audit and production reserves