Fukaya Categories as Categorical Morse Homology
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Fukaya Categories as Categorical Morse Homology
|
|
Creator |
Nadler, D.
|
|
Description |
The Fukaya category of a Weinstein manifold is an intricate symplectic invariant of high interest in mirror symmetry and geometric representation theory. This paper informally sketches how, in analogy with Morse homology, the Fukaya category might result from gluing together Fukaya categories of Weinstein cells. This can be formalized by a recollement pattern for Lagrangian branes parallel to that for constructible sheaves. Assuming this structure, we exhibit the Fukaya category as the global sections of a sheaf on the conic topology of the Weinstein manifold. This can be viewed as a symplectic analogue of the well-known algebraic and topological theories of (micro)localization.
|
|
Date |
2019-02-11T16:52:22Z
2019-02-11T16:52:22Z 2014 |
|
Type |
Article
|
|
Identifier |
Fukaya Categories as Categorical Morse Homology / D. Nadler // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 75 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 53D37 DOI:10.3842/SIGMA.2014.018 http://dspace.nbuv.gov.ua/handle/123456789/146836 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|