Second Order Symmetries of the Conformal Laplacian
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Second Order Symmetries of the Conformal Laplacian
|
|
Creator |
Michel, J.P.
Radoux, F. Šilhan, J. |
|
Description |
Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three.
|
|
Date |
2019-02-11T17:00:31Z
2019-02-11T17:00:31Z 2014 |
|
Type |
Article
|
|
Identifier |
Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 58J10; 53A30; 70S10; 53D20; 53D55 DOI:10.3842/SIGMA.2014.016 http://dspace.nbuv.gov.ua/handle/123456789/146838 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|