Запис Детальніше

Integration of Cocycles and Lefschetz Number Formulae for Differential Operators

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
 
Creator Ramadoss, A.C.
 
Description Let E be a holomorphic vector bundle on a complex manifold X such that dimCX=n. Given any continuous, basic Hochschild 2n-cocycle ψ2n of the algebra Diffn of formal holomorphic differential operators, one obtains a 2n-form fε,ψ2n(D) from any holomorphic differential operator D on E. We apply our earlier results [J. Noncommut. Geom. 2 (2008), 405-448; J. Noncommut. Geom. 3 (2009), 27-45] to show that ∫X fε,ψ2n(D) gives the Lefschetz number of D upto a constant independent of X and ε. In addition, we obtain a ''local'' result generalizing the above statement. When ψ2n is the cocycle from [Duke Math. J. 127 (2005), 487-517], we obtain a new proof as well as a generalization of the Lefschetz number theorem of Engeli-Felder. We also obtain an analogous ''local'' result pertaining to B. Shoikhet's construction of the holomorphic noncommutative residue of a differential operator for trivial vector bundles on complex parallelizable manifolds. This enables us to give a rigorous construction of the holomorphic noncommutative residue of D defined by B. Shoikhet when E is an arbitrary vector bundle on an arbitrary compact complex manifold X. Our local result immediately yields a proof of a generalization of Conjecture 3.3 of [Geom. Funct. Anal. 11 (2001), 1096-1124].
 
Date 2019-02-11T14:54:27Z
2019-02-11T14:54:27Z
2011
 
Type Article
 
Identifier Integration of Cocycles and Lefschetz Number Formulae for Differential Operators / A.C. Ramadoss // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 23 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 16E40; 32L05; 32C38; 58J42
DOI:10.3842/SIGMA.2011.010
http://dspace.nbuv.gov.ua/handle/123456789/146775
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України