Запис Детальніше

Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential
 
Creator Hussin, V.
Marquette, I.
 
Description We consider classical and quantum one and two-dimensional systems with ladder operators that satisfy generalized Heisenberg algebras. In the classical case, this construction is related to the existence of closed trajectories. In particular, we apply these results to the infinite well and Morse potentials. We discuss how the degeneracies of the permutation symmetry of quantum two-dimensional systems can be explained using products of ladder operators. These products satisfy interesting commutation relations. The two-dimensional Morse quantum system is also related to a generalized two-dimensional Morse supersymmetric model. Arithmetical or accidental degeneracies of such system are shown to be associated to additional supersymmetry.
 
Date 2019-02-11T15:23:52Z
2019-02-11T15:23:52Z
2011
 
Type Article
 
Identifier Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential / V. Hussin, I. Marquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81R15; 81R12; 81R50
DOI:10.3842/SIGMA.2011.024
http://dspace.nbuv.gov.ua/handle/123456789/146798
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України