First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
|
|
Creator |
Chanu, C.
Degiovanni, L. Rastelli, G. |
|
Description |
We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians H obtained as one-dimensional extensions of natural (geodesic) n-dimensional Hamiltonians L. The Liouville integrability of L implies the (minimal) superintegrability of H. We prove that, as a consequence of natural integrability conditions, it is necessary for the construction that the curvature of the metric tensor associated with L is constant. As examples, the procedure is applied to one-dimensional L, including and improving earlier results, and to two and three-dimensional L, providing new superintegrable systems.
|
|
Date |
2019-02-11T17:17:50Z
2019-02-11T17:17:50Z 2011 |
|
Type |
Article
|
|
Identifier |
First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator / C. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 70H06; 70H33; 53C21 DOI:10.3842/SIGMA.2011.038 http://dspace.nbuv.gov.ua/handle/123456789/146855 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|