Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras
|
|
Creator |
Aizawa, N.
Chandrashekar, R. Segar, J. |
|
Description |
The conformal Galilei algebra (CGA) is a non-semisimple Lie algebra labelled by two parameters d and ℓ. The aim of the present work is to investigate the lowest weight representations of CGA with d=1 for any integer value of ℓ. First we focus on the reducibility of the Verma modules. We give a formula for the Shapovalov determinant and it follows that the Verma module is irreducible if ℓ=1 and the lowest weight is nonvanishing. We prove that the Verma modules contain many singular vectors, i.e., they are reducible when ℓ≠1. Using the singular vectors, hierarchies of partial differential equations defined on the group manifold are derived. The differential equations are invariant under the kinematical transformation generated by CGA. Finally we construct irreducible lowest weight modules obtained from the reducible Verma modules.
|
|
Date |
2019-02-11T18:07:47Z
2019-02-11T18:07:47Z 2015 |
|
Type |
Article
|
|
Identifier |
Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras / N. Aizawa, R. Chandrashekar, J. Segar // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 17B10; 58J70 DOI:10.3842/SIGMA.2015.002 http://dspace.nbuv.gov.ua/handle/123456789/146864 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|