On 1-Harmonic Functions
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On 1-Harmonic Functions
|
|
Creator |
Wei, S.W.
|
|
Description |
Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; and every 7-dimensional SO(2) × SO(6)-invariant absolutely area-minimizing integral current in R8 is real analytic. The assumption on the SO(2) × SO(6)-invariance cannot be removed, due to the first counter-example in R8, proved by Bombieri, De Girogi and Giusti.
|
|
Date |
2019-02-11T21:15:45Z
2019-02-11T21:15:45Z 2007 |
|
Type |
Article
|
|
Identifier |
On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 53C40; 53C42 http://dspace.nbuv.gov.ua/handle/123456789/146897 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|