Skein Modules from Skew Howe Duality and Affine Extensions
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Skein Modules from Skew Howe Duality and Affine Extensions
|
|
Creator |
Queffelec, H.
|
|
Description |
We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular Uq(sln) representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.
|
|
Date |
2019-02-12T20:58:58Z
2019-02-12T20:58:58Z 2015 |
|
Type |
Article
|
|
Identifier |
Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 81R50; 17B37; 17B67; 57M25; 57M27 DOI:10.3842/SIGMA.2015.030 http://dspace.nbuv.gov.ua/handle/123456789/147018 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|