Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
|
|
Creator |
Kanakubo, Y.
Nakashima, T. |
|
Description |
Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals.
|
|
Date |
2019-02-12T20:32:15Z
2019-02-12T20:32:15Z 2015 |
|
Type |
Article
|
|
Identifier |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 13F60; 81R50; 17B37 DOI:10.3842/SIGMA.2015.033 http://dspace.nbuv.gov.ua/handle/123456789/147010 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|