A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms
|
|
Creator |
Morris, D.W.
|
|
Description |
A Lie algebra gQ over Q is said to be R-universal if every homomorphism from gQ to gl(n,R) is conjugate to a homomorphism into gl(n,Q) (for every n). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an R-universal Q-form. We also provide a classification of the R-universal Lie algebras that are semisimple.
|
|
Date |
2019-02-12T20:33:33Z
2019-02-12T20:33:33Z 2015 |
|
Type |
Article
|
|
Identifier |
A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms / D.W. Morris // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 12 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 17B10; 17B20; 11E72; 20G30 DOI:10.3842/SIGMA.2015.034 http://dspace.nbuv.gov.ua/handle/123456789/147011 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|