Запис Детальніше

Cyclic Homology and Quantum Orbits

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Cyclic Homology and Quantum Orbits
 
Creator Maszczyk, T.
Sütlü, S.
 
Description A natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homological counterpart of the Takeuchi-Galois correspondence between the left coideal subalgebras and the quotient right module coalgebras of a Hopf algebra. A spectral sequence generalizing the classical computation of Hochschild homology of a Hopf algebra to the case of arbitrary homogeneous quotient-coalgebra-Galois extensions is constructed. A Pontryagin type self-duality of the Takeuchi-Galois correspondence is combined with the cyclic duality of Connes in order to obtain dual results on the invariant cyclic homology, with SAYD coefficients, of algebras of invariants in homogeneous quotient-coalgebra-Galois extensions. The relation of this dual result with the Chern character, Frobenius reciprocity, and inertia phenomena in the local Langlands program, the Chen-Ruan-Brylinski-Nistor orbifold cohomology and the Clifford theory is discussed.
 
Date 2019-02-13T16:47:03Z
2019-02-13T16:47:03Z
2015
 
Type Article
 
Identifier Cyclic Homology and Quantum Orbits / T. Maszczyk, S. Sütlü // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 40 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 19D55; 57T15; 06A15; 46A20
DOI:10.3842/SIGMA.2015.041
http://dspace.nbuv.gov.ua/handle/123456789/147108
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України