Constructing Involutive Tableaux with Guillemin Normal Form
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Constructing Involutive Tableaux with Guillemin Normal Form
|
|
Creator |
Smith, A.D.
|
|
Description |
Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux.
|
|
Date |
2019-02-13T17:02:07Z
2019-02-13T17:02:07Z 2015 |
|
Type |
Article
|
|
Identifier |
Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 58A15; 58H10 DOI:10.3842/SIGMA.2015.053 http://dspace.nbuv.gov.ua/handle/123456789/147123 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|