Запис Детальніше

Constructing Involutive Tableaux with Guillemin Normal Form

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Constructing Involutive Tableaux with Guillemin Normal Form
 
Creator Smith, A.D.
 
Description Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux.
 
Date 2019-02-13T17:02:07Z
2019-02-13T17:02:07Z
2015
 
Type Article
 
Identifier Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58A15; 58H10
DOI:10.3842/SIGMA.2015.053
http://dspace.nbuv.gov.ua/handle/123456789/147123
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України