Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
|
|
Creator |
Nakad, R.
Pilca, M. |
|
Description |
We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler-Einstein manifold of positive scalar curvature and endowed with particular spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinc spinor field vanishes. This extends to the spinc case the result of A. Moroianu stating that, on a compact Kähler-Einstein manifold of complex dimension 4ℓ+3 carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero.
|
|
Date |
2019-02-13T17:06:19Z
2019-02-13T17:06:19Z 2015 |
|
Type |
Article
|
|
Identifier |
Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds / R. Nakad, M. Pilca // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 53C27; 53C25; 53C55; 58J50; 83C60 DOI:10.3842/SIGMA.2015.054 http://dspace.nbuv.gov.ua/handle/123456789/147124 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|