From Polygons to Ultradiscrete Painlevé Equations
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
From Polygons to Ultradiscrete Painlevé Equations
|
|
Creator |
Ormerod, C.M.
Yamada, Y. |
|
Description |
The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons with three to eleven sides whose groups of piecewise linear transformations coincide with the Bäcklund transformations and the evolution equations for the ultradiscrete Painlevé equations.
|
|
Date |
2019-02-13T17:08:06Z
2019-02-13T17:08:06Z 2015 |
|
Type |
Article
|
|
Identifier |
From Polygons to Ultradiscrete Painlevé Equations / C.M. Ormerod, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 54 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 14T05; 14H70; 39A13 DOI:10.3842/SIGMA.2015.056 http://dspace.nbuv.gov.ua/handle/123456789/147126 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|