Topological Monodromy of an Integrable Heisenberg Spin Chain
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Topological Monodromy of an Integrable Heisenberg Spin Chain
|
|
Creator |
Lane, J.
|
|
Description |
We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the determinant, or alternatively, as integrating a classical Heisenberg spin chain. We show that the system has non-trivial topological monodromy and relate this to the geometric interpretation of its integrals.
|
|
Date |
2019-02-13T17:18:47Z
2019-02-13T17:18:47Z 2015 |
|
Type |
Article
|
|
Identifier |
Topological Monodromy of an Integrable Heisenberg Spin Chain / J. Lane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 37J35; 53D12 DOI:10.3842/SIGMA.2015.062 http://dspace.nbuv.gov.ua/handle/123456789/147133 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|