Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
|
|
Creator |
Magazev, A.A.
Mikheyev, V.V. Shirokov, I.V. |
|
Description |
Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix inversions and matrix exponentiations, and the composition function can be represented in quadratures. Moreover, it is proven that the transition function from the first canonical coordinates to the second canonical coordinates can be found by quadratures.
|
|
Date |
2019-02-13T17:21:00Z
2019-02-13T17:21:00Z 2015 |
|
Type |
Article
|
|
Identifier |
Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras / A.A. Magazev, V.V. Mikheyev, I.V. Shirokov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 22E05; 22E60; 22E70 DOI:10.3842/SIGMA.2015.066 http://dspace.nbuv.gov.ua/handle/123456789/147137 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|