On Parameter Differentiation for Integral Representations of Associated Legendre Functions
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On Parameter Differentiation for Integral Representations of Associated Legendre Functions
|
|
Creator |
Cohl, H.S.
|
|
Description |
For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function f: C\{−1,1}→C given by f(z)=z/(√(z+1)√(z−1)).
|
|
Date |
2019-02-13T18:18:07Z
2019-02-13T18:18:07Z 2011 |
|
Type |
Article
|
|
Identifier |
On Parameter Differentiation for Integral Representations of Associated Legendre Functions / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 31B05; 31B10; 33B10; 33B15; 33C05; 33C10 DOI:10.3842/SIGMA.2011.050 http://dspace.nbuv.gov.ua/handle/123456789/147177 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|