Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
|
|
Creator |
Boyer, C.P.
|
|
Description |
I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S²×S³. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Yp,q, discovered by physicists by showing that Yp,q and Yp',q' are inequivalent as contact structures if and only if p≠p'.
|
|
Date |
2019-02-13T18:32:17Z
2019-02-13T18:32:17Z 2011 |
|
Type |
Article
|
|
Identifier |
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ / C.P. Boyer // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 58 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 53D42; 53C25 DOI:10.3842/SIGMA.2011.058 http://dspace.nbuv.gov.ua/handle/123456789/147180 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|