Запис Детальніше

Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
 
Creator Boyer, C.P.
 
Description I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S²×S³. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Yp,q, discovered by physicists by showing that Yp,q and Yp',q' are inequivalent as contact structures if and only if p≠p'.
 
Date 2019-02-13T18:32:17Z
2019-02-13T18:32:17Z
2011
 
Type Article
 
Identifier Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ / C.P. Boyer // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 58 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D42; 53C25
DOI:10.3842/SIGMA.2011.058
http://dspace.nbuv.gov.ua/handle/123456789/147180
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України