Balance Systems and the Variational Bicomplex
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title | Balance Systems and the Variational Bicomplex | |
| Creator | Preston, S. | |
| Description | In this work we show that the systems of balance equations (balance systems) of continuum thermodynamics occupy a natural place in the variational bicomplex formalism. We apply the vertical homotopy decomposition to get a local splitting (in a convenient domain) of a general balance system as the sum of a Lagrangian part and a complemental ''pure non-Lagrangian'' balance system. In the case when derivatives of the dynamical fields do not enter the constitutive relations of the balance system, the ''pure non-Lagrangian'' systems coincide with the systems introduced by S. Godunov [Soviet Math. Dokl. 2 (1961), 947-948] and, later, asserted as the canonical hyperbolic form of balance systems in [Müller I., Ruggeri T., Rational extended thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, 1998]. | |
| Date | 2019-02-13T18:39:56Z 2019-02-13T18:39:56Z 2011 | |
| Type | Article | |
| Identifier | Balance Systems and the Variational Bicomplex / S. Preston // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 49Q99; 35Q80 DOI:10.3842/SIGMA.2011.063 http://dspace.nbuv.gov.ua/handle/123456789/147185 | |
| Language | en | |
| Relation | Symmetry, Integrability and Geometry: Methods and Applications | |
| Publisher | Інститут математики НАН України | |
