Equivariant Join and Fusion of Noncommutative Algebras
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Equivariant Join and Fusion of Noncommutative Algebras
|
|
Creator |
Dąbrowski, L.
Hadfield, T. Hajac, P.M. |
|
Description |
We translate the concept of the join of topological spaces to the language of C∗-algebras, replace the C∗-algebra of functions on the interval [0,1] with evaluation maps at 0 and 1 by a unital C∗-algebra C with appropriate two surjections, and introduce the notion of the fusion of unital C∗-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra P with the coacting Hopf algebra H. We prove that, if the comodule algebra P is principal, then so is the fusion comodule algebra. When C=C([0,1]) and the two surjections are evaluation maps at 0 and 1, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal G-bundle X, the diagonal action of G on the join X∗G is free.
|
|
Date |
2019-02-13T17:50:17Z
2019-02-13T17:50:17Z 2015 |
|
Type |
Article
|
|
Identifier |
Equivariant Join and Fusion of Noncommutative Algebras / L. Dąbrowski, T. Hadfield, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 46L85; 58B32 DOI:10.3842/SIGMA.2015.082 http://dspace.nbuv.gov.ua/handle/123456789/147156 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|