Branson's Q-curvature in Riemannian and Spin Geometry
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Branson's Q-curvature in Riemannian and Spin Geometry
|
|
Creator |
Hijazi, O.
Raulot, S. |
|
Description |
On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's Q-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the Dirac operator to the total Branson's Q-curvature. Equality cases are also characterized.
|
|
Date |
2019-02-13T19:10:41Z
2019-02-13T19:10:41Z 2007 |
|
Type |
Article
|
|
Identifier |
Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 53C20; 53C27; 58J50 http://dspace.nbuv.gov.ua/handle/123456789/147214 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|