Запис Детальніше

Harmonic Oscillator on the SO(2,2) Hyperboloid

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Harmonic Oscillator on the SO(2,2) Hyperboloid
 
Creator Petrosyan, D.R.
Pogosyan, G.S.
 
Description In the present work the classical problem of harmonic oscillator in the hyperbolic space H²₂: z²₀+z²₁−z²₂−z²₃=R² has been completely solved in framework of Hamilton-Jacobi equation. We have shown that the harmonic oscillator on H²₂, as in the other spaces with constant curvature, is exactly solvable and belongs to the class of maximally superintegrable system. We have proved that all the bounded classical trajectories are closed and periodic. The orbits of motion are ellipses or circles for bounded motion and ultraellipses or equidistant curve for infinite ones.
 
Date 2019-02-13T17:51:31Z
2019-02-13T17:51:31Z
2015
 
Type Article
 
Identifier Harmonic Oscillator on the SO(2,2) Hyperboloid / D.R. Petrosyan, G.S. Pogosyan // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22E60; 37J15; 37J50; 70H20
DOI:10.3842/SIGMA.2015.096
http://dspace.nbuv.gov.ua/handle/123456789/147158
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України