Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state
Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state
Оцінювання температурної залежності механічного стану резонатора вібраційно-частотного сенсора |
|
Creator |
Байцар, Роман
Квіт, Роман Baitsar, Roman Kvit, Roman |
|
Contributor |
Національний університет «Львівська політехніка»
Lviv Polytechnic National University |
|
Subject |
ниткоподібний монокристал
напівпровідник резонатор тензоперетворювач частота сенсор filamentous monocrystal semiconductor resonator tensotransducer frequency sensor |
|
Description |
Розглянуто комплекс технолого-метрологічних досліджень щодо розроблення методів посадки і закріплення ниткоподібних монокристалів на різних матеріалах підкладок (пружних елементів). Показано шляхи уникнення неконтрольованих спотворень вихідної бездефектної структури монокристала, які можуть виникати у вузлах його кріплення і знижувати добротність коливань резонатора, яка є основною характеристикою якості тензоперетворювача. Механічний стан монокристала повинен відповідати напруженню, за якого його нагрівання від електричного струму живлення не спричинило би помітного стиску монокристала. Досліджено температурну залежність деформації монокристалічного резонатора – чутливого елемента вібраційно-частотного сенсора в робочому температурному діапазоні. Проаналізовано чинники, що визначають температурно-залежну складову деформації резонансного тензоперетворювача з напівпро- відникового монокристала. Вказано напрями оптимізації характеристик вібраційно-частотних сенсорів шляхом цілеспрямованого контролю початкового рівня деформації монокристала, що досягається вибором відповідних конструкційних матеріалів, а також технологічними способами їх виготовлення. The complex of technological and metrological researches concerning development of filamentous monocrystals application and fixing methods on various materials of substrate (elastic elements) is considered. The ways of uncontrolled distortions avoiding of the initial monocrystal defect-free structure that can occur at the nodes of its mounting and reduce the Q-value of the resonator oscillations, which is the main characteristic of the tensotransducer quality, is shown. With this the monocrystal mechanical state should correspond to the stress at which its heating from the electric power supply current would not cause a noticeable monocrystal compression. The temperature dependence of deformation of a monocrystal resonator, which is a sensitive element of a vibration and frequency sensor in the operation temperature range, is studied. The factors that determine the temperature dependent deformation component of the resonant tensotransducer made of the semiconductor monocrystal are analyzed. The directions of vibration and frequency sensors characteristics optimization are indicated by purposeful control of the monocrystal deformation initial level, which is achieved by the choice of appropriate structural materials, as well as technological methods of their production. |
|
Date |
2019-02-08T12:34:14Z
2019-02-08T12:34:14Z 2018-03-29 2018-03-29 |
|
Type |
Article
|
|
Identifier |
Baitsar R. Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state / Roman Baitsar, Roman Kvit // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 45–50.
http://ena.lp.edu.ua:8080/handle/ntb/44106 Baitsar R. Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state / Roman Baitsar, Roman Kvit // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 45–50. |
|
Language |
en
|
|
Relation |
Energy Engineering and Control Systems, 1 (4), 2018
[1] Kudryavtsev, V., Lysenko, A., Milokhin, N., Tishchenko, N. (1974). Presision frequency converters of automated control and management systems. Moscow: Energy. (in Russian) [2] Kartsev, E., Korotkov, V. (1982). Unified string converters. Moscow: Mechanical engineering. (in Russian) [3] Ashanin, V., Stepanov, A. (1985). The use of filamentous monocrystals in measuring technology. Measuring technique, 4, 57–59. (in Russian) [4] Tymoshenko, N. (1989) Trends in the development of mechanical quantities foreign sensors. Instruments and control systems, 11, 44–46. (in Russian) [5] Haueis, M., Dual, J., Cavalloni C., Gnielka M., Buser R. (2000). Packaged bulk micromachined resonant force sensor for high temperature applications. SPIE - Design, Test, Integration and Packaging of MEMS/MOEMS, Paris, May 2000, 4019, 379–388. [6] Zhang, W., Turner, K.L. (2005). Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators, A, 122, 23–30. [7] Zhang, W. M., Hu, K. M., Peng, Z. K., Meng, G. (2015). Tunable micro- and nanomechanical resonators. Sensors, 15, 26478–26566. [8] Liu, H., Zhang, C., Weng, Z., Guo, Y., Wang, Z. (2017). Resonance frequency readout circuit for a 900 MHz SAW device. Sensors, 17 (9),2131. [9] Bogdanova, N., Baitsar, R., Voronin, V., Krasnogenov, E. (1993). Semiconductor string pressure sensor. Sensors and actuators, A, 39 (2),125–128. [10] Baitsar, R. (1996). Current state and prospects of resonance sensors development. Proceedings of the International scientific and technical conference “Instrument construction – 96“, Vinnytsa, 1996, 59. (in Ukrainian) [11] Baitsar, R., Varshava, S. (2001). Semiconductor microsensors. Text book. Lviv, Ukraine: CSTEI. (in Ukrainian) [12] Novikova, S. (1974). Thermal expansion of solid bodies. Moscow: Nauka. (in Russian) [1] Kudryavtsev, V., Lysenko, A., Milokhin, N., Tishchenko, N. (1974). Presision frequency converters of automated control and management systems. Moscow: Energy. (in Russian) [2] Kartsev, E., Korotkov, V. (1982). Unified string converters. Moscow: Mechanical engineering. (in Russian) [3] Ashanin, V., Stepanov, A. (1985). The use of filamentous monocrystals in measuring technology. Measuring technique, 4, 57–59. (in Russian) [4] Tymoshenko, N. (1989) Trends in the development of mechanical quantities foreign sensors. Instruments and control systems, 11, 44–46. (in Russian) [5] Haueis, M., Dual, J., Cavalloni C., Gnielka M., Buser R. (2000). Packaged bulk micromachined resonant force sensor for high temperature applications. SPIE - Design, Test, Integration and Packaging of MEMS/MOEMS, Paris, May 2000, 4019, 379–388. [6] Zhang, W., Turner, K.L. (2005). Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators, A, 122, 23–30. [7] Zhang, W. M., Hu, K. M., Peng, Z. K., Meng, G. (2015). Tunable micro- and nanomechanical resonators. Sensors, 15, 26478–26566. [8] Liu, H., Zhang, C., Weng, Z., Guo, Y., Wang, Z. (2017). Resonance frequency readout circuit for a 900 MHz SAW device. Sensors, 17 (9),2131. [9] Bogdanova, N., Baitsar, R., Voronin, V., Krasnogenov, E. (1993). Semiconductor string pressure sensor. Sensors and actuators, A, 39 (2),125–128. [10] Baitsar, R. (1996). Current state and prospects of resonance sensors development. Proceedings of the International scientific and technical conference "Instrument construction – 96", Vinnytsa, 1996, 59. (in Ukrainian) [11] Baitsar, R., Varshava, S. (2001). Semiconductor microsensors. Text book. Lviv, Ukraine: CSTEI. (in Ukrainian) [12] Novikova, S. (1974). Thermal expansion of solid bodies. Moscow: Nauka. (in Russian) |
|
Rights |
© Національний університет „Львівська політехніка“, 2018
© 2018 The Authors. Published by Lviv Polytechnic National University |
|
Format |
45-50
6 application/pdf image/png |
|
Coverage |
Lviv
|
|
Publisher |
Lviv Politechnic Publishing House
|
|