Запис Детальніше

Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state
Оцінювання температурної залежності механічного стану резонатора вібраційно-частотного сенсора
 
Creator Байцар, Роман
Квіт, Роман
Baitsar, Roman
Kvit, Roman
 
Contributor Національний університет «Львівська політехніка»
Lviv Polytechnic National University
 
Subject ниткоподібний монокристал
напівпровідник
резонатор
тензоперетворювач
частота
сенсор
filamentous monocrystal
semiconductor
resonator
tensotransducer
frequency
sensor
 
Description Розглянуто комплекс технолого-метрологічних досліджень щодо розроблення методів посадки і
закріплення ниткоподібних монокристалів на різних матеріалах підкладок (пружних елементів). Показано
шляхи уникнення неконтрольованих спотворень вихідної бездефектної структури монокристала, які можуть
виникати у вузлах його кріплення і знижувати добротність коливань резонатора, яка є основною
характеристикою якості тензоперетворювача. Механічний стан монокристала повинен відповідати
напруженню, за якого його нагрівання від електричного струму живлення не спричинило би помітного стиску
монокристала. Досліджено температурну залежність деформації монокристалічного резонатора – чутливого
елемента вібраційно-частотного сенсора в робочому температурному діапазоні. Проаналізовано чинники, що
визначають температурно-залежну складову деформації резонансного тензоперетворювача з напівпро-
відникового монокристала. Вказано напрями оптимізації характеристик вібраційно-частотних сенсорів
шляхом цілеспрямованого контролю початкового рівня деформації монокристала, що досягається вибором
відповідних конструкційних матеріалів, а також технологічними способами їх виготовлення.
The complex of technological and metrological researches concerning development of filamentous monocrystals
application and fixing methods on various materials of substrate (elastic elements) is considered. The ways of
uncontrolled distortions avoiding of the initial monocrystal defect-free structure that can occur at the nodes of its
mounting and reduce the Q-value of the resonator oscillations, which is the main characteristic of the tensotransducer
quality, is shown. With this the monocrystal mechanical state should correspond to the stress at which its heating
from the electric power supply current would not cause a noticeable monocrystal compression. The temperature
dependence of deformation of a monocrystal resonator, which is a sensitive element of a vibration and frequency
sensor in the operation temperature range, is studied. The factors that determine the temperature dependent
deformation component of the resonant tensotransducer made of the semiconductor monocrystal are analyzed. The
directions of vibration and frequency sensors characteristics optimization are indicated by purposeful control of the
monocrystal deformation initial level, which is achieved by the choice of appropriate structural materials, as well as
technological methods of their production.
 
Date 2019-02-08T12:34:14Z
2019-02-08T12:34:14Z
2018-03-29
2018-03-29
 
Type Article
 
Identifier Baitsar R. Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state / Roman Baitsar, Roman Kvit // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 45–50.
http://ena.lp.edu.ua:8080/handle/ntb/44106
Baitsar R. Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state / Roman Baitsar, Roman Kvit // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 45–50.
 
Language en
 
Relation Energy Engineering and Control Systems, 1 (4), 2018
[1] Kudryavtsev, V., Lysenko, A., Milokhin, N., Tishchenko, N. (1974). Presision frequency converters of automated control and management systems. Moscow: Energy. (in Russian)
[2] Kartsev, E., Korotkov, V. (1982). Unified string converters. Moscow: Mechanical engineering. (in Russian)
[3] Ashanin, V., Stepanov, A. (1985). The use of filamentous monocrystals in measuring technology. Measuring technique, 4, 57–59. (in Russian)
[4] Tymoshenko, N. (1989) Trends in the development of mechanical quantities foreign sensors. Instruments and control systems, 11, 44–46. (in Russian)
[5] Haueis, M., Dual, J., Cavalloni C., Gnielka M., Buser R. (2000). Packaged bulk micromachined resonant force sensor for high temperature applications. SPIE - Design, Test, Integration and Packaging of MEMS/MOEMS, Paris, May 2000, 4019, 379–388.
[6] Zhang, W., Turner, K.L. (2005). Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators, A, 122, 23–30.
[7] Zhang, W. M., Hu, K. M., Peng, Z. K., Meng, G. (2015). Tunable micro- and nanomechanical resonators. Sensors, 15, 26478–26566.
[8] Liu, H., Zhang, C., Weng, Z., Guo, Y., Wang, Z. (2017). Resonance frequency readout circuit for a 900 MHz SAW device. Sensors, 17 (9),2131.
[9] Bogdanova, N., Baitsar, R., Voronin, V., Krasnogenov, E. (1993). Semiconductor string pressure sensor. Sensors and actuators, A, 39 (2),125–128.
[10] Baitsar, R. (1996). Current state and prospects of resonance sensors development. Proceedings of the International scientific and technical conference “Instrument construction – 96“, Vinnytsa, 1996, 59. (in Ukrainian)
[11] Baitsar, R., Varshava, S. (2001). Semiconductor microsensors. Text book. Lviv, Ukraine: CSTEI. (in Ukrainian)
[12] Novikova, S. (1974). Thermal expansion of solid bodies. Moscow: Nauka. (in Russian)
[1] Kudryavtsev, V., Lysenko, A., Milokhin, N., Tishchenko, N. (1974). Presision frequency converters of automated control and management systems. Moscow: Energy. (in Russian)
[2] Kartsev, E., Korotkov, V. (1982). Unified string converters. Moscow: Mechanical engineering. (in Russian)
[3] Ashanin, V., Stepanov, A. (1985). The use of filamentous monocrystals in measuring technology. Measuring technique, 4, 57–59. (in Russian)
[4] Tymoshenko, N. (1989) Trends in the development of mechanical quantities foreign sensors. Instruments and control systems, 11, 44–46. (in Russian)
[5] Haueis, M., Dual, J., Cavalloni C., Gnielka M., Buser R. (2000). Packaged bulk micromachined resonant force sensor for high temperature applications. SPIE - Design, Test, Integration and Packaging of MEMS/MOEMS, Paris, May 2000, 4019, 379–388.
[6] Zhang, W., Turner, K.L. (2005). Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators, A, 122, 23–30.
[7] Zhang, W. M., Hu, K. M., Peng, Z. K., Meng, G. (2015). Tunable micro- and nanomechanical resonators. Sensors, 15, 26478–26566.
[8] Liu, H., Zhang, C., Weng, Z., Guo, Y., Wang, Z. (2017). Resonance frequency readout circuit for a 900 MHz SAW device. Sensors, 17 (9),2131.
[9] Bogdanova, N., Baitsar, R., Voronin, V., Krasnogenov, E. (1993). Semiconductor string pressure sensor. Sensors and actuators, A, 39 (2),125–128.
[10] Baitsar, R. (1996). Current state and prospects of resonance sensors development. Proceedings of the International scientific and technical conference "Instrument construction – 96", Vinnytsa, 1996, 59. (in Ukrainian)
[11] Baitsar, R., Varshava, S. (2001). Semiconductor microsensors. Text book. Lviv, Ukraine: CSTEI. (in Ukrainian)
[12] Novikova, S. (1974). Thermal expansion of solid bodies. Moscow: Nauka. (in Russian)
 
Rights © Національний університет „Львівська політехніка“, 2018
© 2018 The Authors. Published by Lviv Polytechnic National University
 
Format 45-50
6
application/pdf
image/png
 
Coverage Lviv
 
Publisher Lviv Politechnic Publishing House