Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
|
|
Creator |
Kostov, N.A.
Gerdjikov, V.S. Valchev, T.I. |
|
Description |
We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k → 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.
|
|
Date |
2019-02-14T14:44:05Z
2019-02-14T14:44:05Z 2007 |
|
Type |
Article
|
|
Identifier |
Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice / N.A. Kostov, V.S. Gerdjikov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 37K20; 35Q51; 74J30; 78A60 http://dspace.nbuv.gov.ua/handle/123456789/147363 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|