Quantum Analogs of Tensor Product Representations of su(1,1)
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Quantum Analogs of Tensor Product Representations of su(1,1)
|
|
Creator |
Groenevelt, W.
|
|
Description |
We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients.
|
|
Date |
2019-02-14T17:38:28Z
2019-02-14T17:38:28Z 2011 |
|
Type |
Article
|
|
Identifier |
Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 20G42; 33D80 DOI: http://dx.doi.org/10.3842/SIGMA.2011.077 http://dspace.nbuv.gov.ua/handle/123456789/147402 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|