From slq(2) to a Parabosonic Hopf Algebra
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
From slq(2) to a Parabosonic Hopf Algebra
|
|
Creator |
Tsujimoto, S.
Vinet, L. Zhedanov, A. |
|
Description |
A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is obtained as a q=−1 limit of the slq(2) algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of sl₋₁(2) are obtained and expressed in terms of the dual −1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.
|
|
Date |
2019-02-14T17:43:42Z
2019-02-14T17:43:42Z 2011 |
|
Type |
Article
|
|
Identifier |
From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 17B37; 17B80; 33C45 http://dspace.nbuv.gov.ua/handle/123456789/147403 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|