A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
|
|
Creator |
Balseiro, P.
Sansonetto, N. |
|
Description |
We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M-cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579-588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
|
|
Date |
2019-02-14T18:32:10Z
2019-02-14T18:32:10Z 2016 |
|
Type |
Article
|
|
Identifier |
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries / P. Balseiro, N. Sansonetto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 70F25; 70H33; 53D20 DOI:10.3842/SIGMA.2016.018 http://dspace.nbuv.gov.ua/handle/123456789/147431 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|