Запис Детальніше

A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
 
Creator Balseiro, P.
Sansonetto, N.
 
Description We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M-cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579-588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
 
Date 2019-02-14T18:32:10Z
2019-02-14T18:32:10Z
2016
 
Type Article
 
Identifier A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries / P. Balseiro, N. Sansonetto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 70F25; 70H33; 53D20
DOI:10.3842/SIGMA.2016.018
http://dspace.nbuv.gov.ua/handle/123456789/147431
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України