Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
|
|
Creator |
Fassò, F.
Giacobbe, A. |
|
Description |
Bifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that the reduced dynamics is periodic. The integrability of such systems has been proven by M. Field and J. Hermans with a reconstruction technique. We apply the result to the nonholonomic system of a ball rolling on a surface of revolution.
|
|
Date |
2019-02-16T08:37:14Z
2019-02-16T08:37:14Z 2007 |
|
Type |
Article
|
|
Identifier |
Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System / F. Fassò, A. Giacobbe // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 20 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 37J35; 70H33 http://dspace.nbuv.gov.ua/handle/123456789/147810 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|