Запис Детальніше

Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System
 
Creator Fassò, F.
Giacobbe, A.
 
Description Bifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that the reduced dynamics is periodic. The integrability of such systems has been proven by M. Field and J. Hermans with a reconstruction technique. We apply the result to the nonholonomic system of a ball rolling on a surface of revolution.
 
Date 2019-02-16T08:37:14Z
2019-02-16T08:37:14Z
2007
 
Type Article
 
Identifier Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System / F. Fassò, A. Giacobbe // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 20 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37J35; 70H33
http://dspace.nbuv.gov.ua/handle/123456789/147810
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України