Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
|
|
Creator |
Ragnisco, O.
Ballesteros, A. Herranz, F.J. Musso, F. |
|
Description |
An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
|
|
Date |
2019-02-16T08:10:54Z
2019-02-16T08:10:54Z 2007 |
|
Type |
Article
|
|
Identifier |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 37J35; 17B37 http://dspace.nbuv.gov.ua/handle/123456789/147788 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|