Запис Детальніше

A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
 
Creator Sarlet, W.
 
Description We review properties of so-called special conformal Killing tensors on a Riemannian manifold (Q,g) and the way they give rise to a Poisson-Nijenhuis structure on the tangent bundle TQ. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function E, homogeneous of degree two in the fibre coordinates on TQ. It is shown that when a symmetric type (1,1) tensor field K along the tangent bundle projection τ: TQ→ Q satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem.
Remove selected
 
Date 2019-02-16T08:14:44Z
2019-02-16T08:14:44Z
2007
 
Type Article
 
Identifier A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold / W. Sarlet // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37J35; 53C60; 70H06
http://dspace.nbuv.gov.ua/handle/123456789/147793
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України