Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
|
|
Creator |
Aratyn, H.
van de Leur, J. |
|
Description |
We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for n × n matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions.
|
|
Date |
2019-02-16T08:10:09Z
2019-02-16T08:10:09Z 2007 |
|
Type |
Article
|
|
Identifier |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 11E88; 17B67; 22E67; 37K10 http://dspace.nbuv.gov.ua/handle/123456789/147787 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|