Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
|
|
Creator |
Rastelli, G.
|
|
Description |
We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quantization procedures. In the examples considered, we have that the Weyl formula always preserves the original superintegrable structure of the system, while the Born-Jordan formula, when producing different operators than the Weyl's one, does not.
|
|
Date |
2019-02-16T09:15:55Z
2019-02-16T09:15:55Z 2016 |
|
Type |
Article
|
|
Identifier |
Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator / G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 15 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 81S05; 81R12; 70H06 DOI:10.3842/SIGMA.2016.081 http://dspace.nbuv.gov.ua/handle/123456789/147848 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|