Запис Детальніше

Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
 
Creator Rastelli, G.
 
Description We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quantization procedures. In the examples considered, we have that the Weyl formula always preserves the original superintegrable structure of the system, while the Born-Jordan formula, when producing different operators than the Weyl's one, does not.
 
Date 2019-02-16T09:15:55Z
2019-02-16T09:15:55Z
2016
 
Type Article
 
Identifier Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator / G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 15 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81S05; 81R12; 70H06
DOI:10.3842/SIGMA.2016.081
http://dspace.nbuv.gov.ua/handle/123456789/147848
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України