Запис Детальніше

A Duflo Star Product for Poisson Groups

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A Duflo Star Product for Poisson Groups
 
Creator Brochier, A.
 
Description Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra a and the subalgebra of ad-invariant in the symmetric algebra of a. As our proof relies on Etingof-Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev-Torossian proof of the Kashiwara-Vergne conjecture, and on the relation observed by Bar-Natan-Le-Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot.
 
Date 2019-02-16T09:18:49Z
2019-02-16T09:18:49Z
2016
 
Type Article
 
Identifier A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20G42; 17B37; 53D55
DOI:10.3842/SIGMA.2016.088
http://dspace.nbuv.gov.ua/handle/123456789/147854
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України