Запис Детальніше

A Riemann-Hilbert Approach for the Novikov Equation

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A Riemann-Hilbert Approach for the Novikov Equation
 
Creator Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
 
Description We develop the inverse scattering transform method for the Novikov equation ut−utxx+4u²ux=3uuxuxx+u²uxxx considered on the line x∈(−∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3×3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
 
Date 2019-02-16T09:26:42Z
2019-02-16T09:26:42Z
2016
 
Type Article
 
Identifier A Riemann-Hilbert Approach for the Novikov Equation / A. Boutet de Monvel, D. Shepelsky, L. Zielinski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q53; 37K15; 35Q15; 35B40; 35Q51; 37K40
DOI:10.3842/SIGMA.2016.095
http://dspace.nbuv.gov.ua/handle/123456789/147860
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України