Запис Детальніше

Geometry of G-Structures via the Intrinsic Torsion

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Geometry of G-Structures via the Intrinsic Torsion
 
Creator Niedziałomski, K.
 
Description We study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure induced from the structure on M and the Killing form of SO(n). We show, in particular, that minimality of P is equivalent to harmonicity of an induced section of the homogeneous bundle SO(M)×SO(n)SO(n)/G, with a Riemannian metric on M obtained as the pull-back with respect to this section of the Riemannian metric on the considered associated bundle, and to the minimality of the image of this section. We apply obtained results to the case of almost product structures, i.e., structures induced by plane fields.
 
Date 2019-02-18T14:54:45Z
2019-02-18T14:54:45Z
2016
 
Type Article
 
Identifier Geometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C10; 53C24; 53C43; 53C15
DOI:10.3842/SIGMA.2016.107
http://dspace.nbuv.gov.ua/handle/123456789/148543
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України